Wavefunctions: Position and Momentum

Notes taken by Wilson Wongso

Contents

0 Preface 1
1 Position 1
1.1 Probability of Finding the Position of a Particle 2
1.2 Expectation Value of the Position of a Particle 2
1.3 Position Operator . 3

2 Momentum 3
2.1 Expectation Value of the Momentum of a Particle 4
2.2 Momentum Operator . 6

3 Importance of Position and Momentum Operators 6
References 6

0 Preface

The following notes are based on the lecture video Position and Momentum from Wavefunctions (Khan, 2018). The author simply wishes to compile a part of his learning journey into this document.

1 Position

Suppose a particle is described by its wavefunction $\psi(x, t)$.

1.1 Probability of Finding the Position of a Particle

The probability that we will find the particle between two points a and b, is given by the integral:

$$
\int_{a}^{b}|\psi(x, t)|^{2} d x
$$

1.2 Expectation Value of the Position of a Particle

While the expectation value of the position is given by the integral:

$$
\begin{equation*}
\langle x\rangle=\int_{-\infty}^{\infty} x|\psi(x, t)|^{2} d x \tag{1}
\end{equation*}
$$

What the expectation value represents is not the mean value of position from taking several consecutive measurements of the particle.

This is because consecutive measurements would cause wavefunction collapse, turning the wavefunction into a delta-function-like graph.

Instead, the expectation value represents the mean value of position from single measure-
ments of an infinite collection of identical particles/wavefunctions/systems, at an exact same time.

Alternatively, we can measure one wavefunction, let the system recover from the collapse, take the measurement again, repeat, and then finally take the mean of the position.

Both of these methods allow us to calculate the expectation value as:

$$
\langle x\rangle=\frac{x_{1}+x_{2}+. .+x_{n}}{n}
$$

where n is the number of measurements we took.

1.3 Position Operator

Now we'd like to find the corresponding position operator \hat{x}, which would be a Hermitian Operator due to the $2^{\text {nd }}$ postulate of Quantum Mechanics.

Recall that the expectation value of the position x can be related to its operator \hat{x} and is defined by the following:

$$
\begin{equation*}
\langle x\rangle=\frac{\langle\psi| \hat{x}|\psi\rangle}{\langle\psi \mid \psi\rangle} \tag{2}
\end{equation*}
$$

We can then equate (1) to (2) since they both represent the expectation value of x :

$$
\frac{\langle\psi| \hat{x}|\psi\rangle}{\langle\psi \mid \psi\rangle}=\int_{-\infty}^{\infty} x|\psi(x, t)|^{2} d x
$$

Since the wavefunction is normalized, its inner product with itself is 1 :

$$
\langle\psi| \hat{x}|\psi\rangle=\int_{-\infty}^{\infty} x|\psi(x, t)|^{2} d x
$$

We also know that the magnitude squared of the wavefunction $|\psi|^{2}$ is just ψ multiplied by its conjugate ψ^{*}. Substituting that and rearranging the right-hand side yields:

$$
\langle\psi| \hat{x}|\psi\rangle=\int_{-\infty}^{\infty} \psi^{*}(x) \psi d x
$$

From here, we can deduce that the operator \hat{x} is simply given by its position x :

$$
\hat{x}=x
$$

2 Momentum

Similarly, the momentum of a particle can be represented by a Hermitian Operator \hat{p}_{x}.
We can arrive at this operator by firstly finding the expectation value of its momentum, $\left\langle p_{x}\right\rangle$.

2.1 Expectation Value of the Momentum of a Particle

Surely enough, we can actually derive $\left\langle p_{x}\right\rangle$ using the expectation value of its position $\langle x\rangle$. We begin by differentiating $\langle x\rangle$ with respect to time:

$$
\begin{aligned}
\frac{d\langle x\rangle}{d t} & =\frac{d}{d t} \int_{-\infty}^{\infty} x|\psi(x, t)|^{2} d x \\
& =\int_{-\infty}^{\infty} \frac{\partial}{\partial t}\left[x|\psi(x, t)|^{2}\right] d x \\
& =\int_{-\infty}^{\infty} x \frac{\partial}{\partial t}\left[|\psi(x, t)|^{2}\right] d x \\
& =\int_{-\infty}^{\infty} x \frac{\partial}{\partial t}\left(\psi^{*} \cdot \psi\right) d x
\end{aligned}
$$

Recall that in the derivation of Schrödinger's Equation, we had already found an expression for $\frac{\partial}{\partial t}\left(\psi^{*} \cdot \psi\right)$, plugging that in yields:

$$
\begin{aligned}
\frac{d\langle x\rangle}{d t} & =\int_{-\infty}^{\infty} x\left[\psi^{*}\left(\frac{i \hbar}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}\right)-\psi\left(\frac{i \hbar}{2 m} \frac{\partial^{2} \psi^{*}}{\partial x^{2}}\right)\right] d x \\
& =\frac{i \hbar}{2 m} \int_{-\infty}^{\infty} x\left[\psi^{*} \frac{\partial^{2} \psi}{\partial x^{2}}-\psi \frac{\partial^{2} \psi^{*}}{\partial x^{2}}\right] d x \\
& =\frac{i \hbar}{2 m} \int_{-\infty}^{\infty} x \frac{\partial}{\partial x}\left(\psi^{*} \frac{\partial \psi}{\partial x}-\psi \frac{\partial \psi^{*}}{\partial x}\right) d x
\end{aligned}
$$

Next, we're going to utilize integration by parts. If we let $u=x$:

$$
\begin{aligned}
u & =x \\
d u & =\frac{\partial x}{\partial x} \\
d u & =1
\end{aligned}
$$

and $d v=\frac{\partial}{\partial x}\left(\psi^{*} \frac{\partial \psi}{\partial x}-\psi \frac{\partial \psi^{*}}{\partial x}\right):$

$$
\begin{aligned}
d v & =\frac{\partial}{\partial x}\left(\psi^{*} \frac{\partial \psi}{\partial x}-\psi \frac{\partial \psi^{*}}{\partial x}\right) \\
v & =\int_{-\infty}^{\infty} \frac{\partial}{\partial x}\left(\psi^{*} \frac{\partial \psi}{\partial x}-\psi \frac{\partial \psi^{*}}{\partial x}\right) d x \\
v & =\psi^{*} \frac{\partial \psi}{\partial x}-\psi \frac{\partial \psi^{*}}{\partial x}
\end{aligned}
$$

Plugging these expressions back to our original integral:

$$
\frac{d\langle x\rangle}{d t}=\frac{i \hbar}{2 m}\left[\left.x\left(\psi^{*} \frac{\partial \psi}{\partial x}-\psi \frac{\partial \psi^{*}}{\partial x}\right)\right|_{-\infty} ^{\infty}-\int_{-\infty}^{\infty}\left(\psi^{*} \frac{\partial \psi}{\partial x}-\psi \frac{\partial \psi^{*}}{\partial x}\right) d x\right]
$$

Because of normalization condition, $\left.\left(\psi^{*} \frac{\partial \psi}{\partial x}-\psi \frac{\partial \psi^{*}}{\partial x}\right)\right|_{-\infty} ^{\infty}$ tends to zero, thus:

$$
\frac{d\langle x\rangle}{d t}=-\frac{i \hbar}{2 m} \int_{-\infty}^{\infty}\left(\psi^{*} \frac{\partial \psi}{\partial x}-\psi \frac{\partial \psi^{*}}{\partial x}\right) d x
$$

We are going to utilize integration by parts one more time, but only on the right half of the integral:

$$
\int_{-\infty}^{\infty} \psi \frac{\partial \psi^{*}}{\partial x} d x=\left.\psi\left(\psi^{*}\right)\right|_{-\infty} ^{\infty}-\int_{-\infty}^{\infty} \psi^{*} \frac{\partial \psi}{\partial x} d x
$$

Again, because of the normalization condition, both ψ and ψ^{*} tends to zero as x approaches $\pm \infty$. Therefore we are left with:

$$
\int_{-\infty}^{\infty} \psi \frac{\partial \psi^{*}}{\partial x} d x=-\int_{-\infty}^{\infty} \psi^{*} \frac{\partial \psi}{\partial x} d x
$$

Plugging it to the original integral:

$$
\begin{aligned}
\frac{d\langle x\rangle}{d t} & =-\frac{i \hbar}{2 m} \int_{-\infty}^{\infty}\left[\psi^{*} \frac{\partial \psi}{\partial x}-\left(-\psi^{*} \frac{\partial \psi}{\partial x}\right)\right] d x \\
& =-\frac{i \hbar}{2 m} \int_{-\infty}^{\infty} 2 \cdot \psi^{*} \frac{\partial \psi}{\partial x} d x
\end{aligned}
$$

The 2 s cancels each other, and we are left with

$$
\begin{equation*}
\frac{d\langle x\rangle}{d t}=-\frac{i \hbar}{m} \int_{-\infty}^{\infty} \psi^{*} \frac{\partial \psi}{\partial x} d x \tag{3}
\end{equation*}
$$

Now, to move forward, we know the postulate that the derivative of the expectation value $\langle x\rangle$ with respect to time is just the expectation value of the velocity operator v_{x} :

$$
\left\langle v_{x}\right\rangle=\frac{d\langle x\rangle}{d t}
$$

And the expectation value of the momentum operator $\left\langle p_{x}\right\rangle$ can be related to $\left\langle v_{x}\right\rangle$ by:

$$
\left\langle p_{x}\right\rangle=m\left\langle v_{x}\right\rangle
$$

Substituting $\left\langle v_{x}\right\rangle$ with the derivative in (3):

$$
\begin{aligned}
\left\langle p_{x}\right\rangle & =m\left(-\frac{i \hbar}{m} \int_{-\infty}^{\infty} \psi^{*} \frac{\partial \psi}{\partial x} d x\right) \\
& =-i \hbar \int_{-\infty}^{\infty} \psi^{*} \frac{\partial \psi}{\partial x} d x
\end{aligned}
$$

Changing the constants in front of the integral into its fraction form yields:

$$
\begin{equation*}
\left\langle p_{x}\right\rangle=\frac{\hbar}{i} \int_{-\infty}^{\infty} \psi^{*} \frac{\partial \psi}{\partial x} d x \tag{4}
\end{equation*}
$$

2.2 Momentum Operator

Similar to finding the position operator, we can start by first representing $\left\langle p_{x}\right\rangle$ in terms of the operator \hat{p}_{x} :

$$
\begin{equation*}
\left\langle p_{x}\right\rangle=\frac{\langle\psi| \hat{p}_{x}|\psi\rangle}{\langle\psi \mid \psi\rangle} \tag{5}
\end{equation*}
$$

Then equate (4) to (5) since they both are equivalent to $\left\langle p_{x}\right\rangle$:

$$
\frac{\langle\psi| \hat{p}_{x}|\psi\rangle}{\langle\psi \mid \psi\rangle}=\frac{\hbar}{i} \int_{-\infty}^{\infty} \psi^{*} \frac{\partial \psi}{\partial x} d x
$$

The denominator of the left hand side is just 1, and rearranging the right-hand side yields:

$$
\langle\psi| \hat{p}_{x}|\psi\rangle=\int_{-\infty}^{\infty} \psi^{*}\left(\frac{\hbar}{i} \frac{\partial}{\partial x}\right) \psi d x
$$

From which we can finally deduce the momentum operator \hat{p}_{x} as:

$$
\hat{p}_{x}=\frac{\hbar}{i} \frac{\partial}{\partial x}
$$

3 Importance of Position and Momentum Operators

Almost all Classical Mechanics quantities can be expressed in terms of position and momentum.

For instance the Kinetic Energy:

$$
E_{k}=\frac{1}{2} m v^{2}=\frac{p^{2}}{2 m}
$$

and others like the Potential Energy, Angular Momentum, etc.
In general we can find the expectation value of almost any Classical Mechanics quantity Q by using the operators \hat{x} and \hat{p}_{x} :

$$
\langle Q(x, p)\rangle=\int_{-\infty}^{\infty} \psi^{*} Q\left(\hat{x}, \hat{p}_{x}\right) \psi d x
$$

References

Khan. (2018). Position and momentum from wavefunctions - quantum mechanics. Retrieved from https://youtu.be/Egu4i8umpoM

