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0 Preface

The following lecture notes are mostly based on lecture videos provided by the lecturer.
Any mistakes in the following notes are likely to be the author’s. Further reading and
practice problems are highly encouraged.

1 Convergent Infinite Series

Given an infinite sequence (a1, a2, a3, ...), the nth partial sum Sn is the sum of the first n
terms of the sequence. That is,

Sn =
n∑

k=1

ak

An infinite series is said to be convergent if the sequence of its partial sums (S1, S2, S3, ...)
tends to a limit. Mathematically, a series converges if there exists a number ` such that
for every arbitrarily small positive number ε, there is a (sufficiently large) integer N such
that for all n ≥ N ,

|Sn − `| < ε
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A series that is not convergent is said to be divergent. There are multiple tests to find
out whether a series is convergent or divergent.

2 Ratio Test

Given a series
∞∑
n=1

an

where each term is a real or complex number and an is nonzero when n is large. The
ratio test uses the limit

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
where an and an+1 corresponds to the nth and (n+ 1)th term of the series.

There are three cases for the value of L:

• if L < 1 then the series converges absolutely.

• if L > 1 then the series is divergent.

• if L = 1 or the limit fails to exist, then the test is inconclusive, because there exist
both convergent and divergent series that satisfy this case.

2.1 Example Problem

Given the infinite series
∞∑
n=1

2n

n! n

Find out whether it is convergent.

Solution

We begin by finding the nth and the (n+ 1)th term of the series

an =
2n

n! n

an+1 =
2n+1

(n+ 1)! (n+ 1)

Then, by the ratio test, find the absolute value of the ratio between the two terms

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
= lim

n→∞

∣∣∣∣ 2n+1

(n+ 1)! (n+ 1)
· n! n

2n

∣∣∣∣
Using basic indices rule and the fact that

(n+ 1)! = (n+ 1) n!
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We can simplify L into

L = lim
n→∞

∣∣∣∣ 2 n! n

(n+ 1) n! (n+ 1)

∣∣∣∣
= lim

n→∞

∣∣∣∣ 2 n

(n+ 1) (n+ 1)

∣∣∣∣
= lim

n→∞

∣∣∣∣ 2 n

(n+ 1)2

∣∣∣∣
Direct substitution of the limit will result in an indeterminate form of ∞∞ , thus the usage
of L’Hôpital’s rule is required.

L
L‘H
= lim

n→∞

∣∣∣∣ 2

2(n+ 1)

∣∣∣∣
Finally, substituting the limit will result to a finite number

L =
2

∞
L = 0

Since L < 1, we can conclude that the series is convergent.

3 Limit Comparison Test

Given two series
∑

n an and
∑

n bn with an ≥ 0, bn > 0 for all n. If

lim
n→∞

an
bn

= L

with 0 < L <∞, then either both series converge or both series diverge.

We can utilize this test by having prior knowledge of the convergence of another series.
Later on, we can set this series as

∑
n bn and compare it to the series in question,

∑
n an.

We’ll introduce two series which we can utilize.

3.1 Geometric Series

The general form of a geometric series is given by

∞∑
n=0

arn

where r corresponds to the ratio between two consecutive terms. We can tell whether
the geometric series is convergent by observing its ratio. The two cases of r are:

• if |r| < 1 then the series converges.

• if r > 1 or r < −1 then the series is divergent.
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3.2 p-Series

The p-series, or the hyperharmonic series, is defined as

∞∑
n=1

1

np

for any real number p.

When p = 1, the p-series is the harmonic series and is divergent. Else, p-series converges
for all p > 1.

Note: If p > 1 then the sum of the p-series is ζ(p), i.e., the Riemann zeta function
evaluated at p.

3.3 Example Problem

Given the infinite series
∞∑
n=1

3n2 + 1

2n5 + n+ 2
(1)

Find out whether it is convergent.

Solution

Firstly, we need to find a suitable series to set as
∑

n bn. A good choice would be a series
that is not only simple, but allows us to evaluate the limit easily. By setting∑

n

bn =
∞∑
n=1

1

n3

We do know that the series converges since it is a p-series with p = 3. Since p > 1, the
series therefore converges.

From there, we can carry out the limit comparison test with summation (1) as our
∑

n an.

L = lim
n→∞

an
bn

= lim
n→∞

3n2 + 1

2n5 + n+ 2
· n

3

1

= lim
n→∞

3n5 + n3

2n5 + n+ 2

With the same degree of polynomial on both the numerator and denominator of the
fraction, we can conclude that the limit L tends to

L =
3

2

Since L > 0, then we can conclude that both series converges and that the infinite series
(1) converges.
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4 Integral Test

Consider an infinite series
∞∑

n=N

f(n)

where N is an integer and f is a non-negative function defined on the unbounded interval
[N,∞), on which it is monotone decreasing. The infinite series converges to a real number
if and only if the improper integral ∫ ∞

N

f(x)dx

is finite. Else, the infinite series diverges just like its integral.

4.1 Example Problem 1

Given the infinite series
∞∑
n=1

n

(n2 + 1)
3
2

(2)

Find out whether it is convergent.

Solution

To conveniently carry out the integral test, we replace all n with x and set the terms in
summation as f(x).

f(x) =
x

(x2 + 1)
3
2

Then integrate the function with the corresponding bounds

I =

∫ ∞
1

f(x) dx

=

∫ ∞
1

x

(x2 + 1)
3
2

dx

By letting u = x2 + 1, we find that

u = x2 + 1

du

dx
= 2x

1

2
du = x dx
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Also notice that the upper bound of integration do not change after substitution, whereas
its lower bound becomes 2. Thus we obtain

I =
1

2

∫ ∞
2

1

u
3
2

du

=
1

2

∫ ∞
2

u−
3
2 du

= −u−
1
2

]∞
2

= − 1√
u

∣∣∣∞
2

= lim
u→∞

[
− 1√

u

]
−
[
− 1√

2

]

=
1√
2

Since the integral is finite, series (2) therefore converges.

4.2 Example Problem 2

Given the infinite series
∞∑
n=1

1

4n2 − 1
(3)

Find out whether it is convergent.

Solution

Set f(x) as the terms in summation (3)

f(x) =
1

4x2 − 1

Then integrate the function with the corresponding bounds

I =

∫ ∞
1

f(x) dx

=

∫ ∞
1

1

4x2 − 1
dx
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Utilizing partial fractions, we can split the integral into the following:

I =
1

2

∫ ∞
1

1

2x− 1
− 1

2x+ 1
dx

=
1

2

∫ ∞
1

1

2x− 1
dx− 1

2

∫ ∞
1

1

2x+ 1
dx

=

[
1

4
ln|2x− 1| − 1

4
ln|2x+ 1|

]∞
1

=

[
1

4
ln

∣∣∣∣2x− 1

2x+ 1

∣∣∣∣]∞
1

= lim
x→∞

[
1

4
ln

∣∣∣∣2x− 1

2x+ 1

∣∣∣∣]− 1

4
ln

(
1

3

)
The limit of the term inside the natural logarithm evaluates to 1 as x tends to ∞, thus
we are left with

I =
1

4
ln(1)− 1

4
ln

(
1

3

)

= −1

4
ln

(
1

3

)

=
1

4
ln(3)

Since I evaluates to a finite number, summation (3) therefore converges.

7


	Preface
	Convergent Infinite Series
	Ratio Test
	Example Problem

	Limit Comparison Test
	Geometric Series
	p-Series
	Example Problem

	Integral Test
	Example Problem 1
	Example Problem 2


